
Design Patterns
The Timeless Way of Coding

Designed and Presented by
Dr. Heinz Kabutz

Illustrations by Edith Sher

Copyright © 2005 Maximum Solutions (Pty) Ltd – All Rights Reserved



2

Co
py

rig
ht

 ©
 2

00
5 

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll 

Ri
gh

ts
 R

es
er

ve
d Dr Heinz Kabutz

• Born and bred in fishing village Cape Town
• Professional Java programmer since 1997

– Worked on many large Java systems
– Trained hundreds of programmers in Java and 

Design Patterns

• PhD in Computer Science from the 
University of Cape Town
– Focused on performance analysis of distributed 

communicating systems



3

Co
py

rig
ht

 ©
 2

00
5 

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll 

Ri
gh

ts
 R

es
er

ve
d Maximum Solutions (Pty) Ltd

The Java Specialists
• Founded in 1998 by Heinz & Helene Kabutz
• A South African company

– Active in South Africa, Germany, Austria, UK, 
Mauritius, China, Estonia, Switzerland

• Company has four interacting energies:
– Software Development
– Specialist Training

• Maximum one week a month
– Consulting
– Research

• The Java™ Specialists’ Newsletter
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ve
d The Java Specialists’ Newsletter

• Advanced free publication written 
specifically for Java Specialists

• Only publication of its kind in the world
• Translated into 10 languages (incl Zulu)
• Produced in South Africa

– Something that Africa can be proud of

• Currently read in 108 countries
• Over 10000 regular readers
• http://www.javaspecialists.co.za 
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ve
d 1: Introduction to Patterns
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ve
d Structure of Talk

• Introduction to Design Patterns
• The Singleton

– Why your developers like it

• The Adapter
– Which to use when
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ve
d Questions

• Please please please please ask questions!
• There are some stupid questions

– They are the ones you didn’t ask
– Once you’ve asked them, they are not stupid 

anymore

• Assume that if you didn’t understand 
something that it was my fault

• The more you ask, the more everyone learns 
(including me)
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ve
d Learning Patterns

• Design Patterns are for
programmers and developers
– NOT analysts and architects!

• Improves programmer communication
• Broad-based Patterns Educational 

Empowerment (BBPEE)
• Courses & Study Groups

– Courses short and sweet
– Led by people already in the know
– Best approach: Internal courses
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ve
d Why are learning patterns?

• Manager forced you

• Want to become better OO programmer
• Fascination with Patterns
• Free breakfast?
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ve
d Vintage Wines

• Design Patterns are like good red wine
– You cannot appreciate them at first
– As you study them you learn the difference 

between plonk and vintage
– As you become a connoisseur you experience 

the various textures you didn’t notice before

• Warning: Once you are hooked, 
you will no longer be satisfied 
with plonk!



11

Co
py

rig
ht

 ©
 2

00
5 

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll 

Ri
gh

ts
 R

es
er

ve
d Why are patterns so important?

• Provide a view into the brains
of OO experts

• Help you understand existing 
designs

• Patterns in Java, Volume 1, 
Mark Grand writes
– "What makes a bright, experienced programmer 

much more productive than a bright, but 
inexperienced, programmer is experience."
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ve
d Coding Patterns

• We have all seen patterns in code:
– for (int i=0; i<names.length; i++) ...
– common data structures, like linked list

• This is the way we “do things”
• University teaches us to code, to theorise, 

but not to design
– Lecturers often don’t have enough real-world 

experience
• Design is normally learnt through 

experience
– At the expense of the employer!
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ve
d Introduction

• To begin learning Design Patterns, you need 
the basics:
– Abstraction
– Encapsulation
– Modularity
– Hierarchy (Composition and Inheritance)

• Should be able to follow basic UML class 
diagrams
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ve
d Design Patterns Origin

The Timeless Way of Building
Christopher Alexander

There is a central quality which is the root criterion of 
life and spirit in a man, a town, a 

building, or a wilderness. 
If you want to make a living 

flower, you don’t build it 
physically, with tweezers, 
cell by cell.  You grow it 

from the seed.
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ve
d What’s in a name?

The Timeless Way of Building
The search for a name is a fundamental part of the 

process of inventing or discovering a pattern.
So long as a pattern has a weak name, it means that 

it is not a clear concept, and you cannot tell me to 
make “one”.
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ve
d Why do we need a diagram?

The Timeless Way of Building
If you can’t draw a [class] diagram of it, it isn’t a 

pattern
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ve
d Misuse of Design Patterns

• Patterns Misapplied
– “design” patterns should not be used during 

analysis

• Cookie Cutter Patterns
– patterns are generalised solutions

• Misuse By Omission
– reinventing a crooked wheel
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ve
d Summary

• Object Orientation is here to stay
• Design Patterns will fast-track you in 

learning how to design with objects
• Remember: BBPEE!
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ve
d Singleton
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ve
d Singleton

• Intent
– Ensure a class only

has one instance, and
provide a global point
of access to it.
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ve
d Motivation: Singleton

• It’s important for some classes to have 
exactly one instance, e.g. SecurityModule
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ve
d Sample Code: Singleton

public class SecurityModule {
  private static SecurityModule instance = 
    new SecurityModule();
  public static SecurityModule getInstance() {
    return instance;
  }
  private SecurityModule() {
    loadPasswords();
  }
  public UserContext login(String username, 
      String password) {
    return new UserContext(username, password);
  }
 
  // etc.
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ve
d Applicability: Singleton

• Use the Singleton pattern when
– there must be exactly one instance of a class, 

and it must be accessible to clients from a well-
known access point. 

– when the sole instance should be extensible by 
subclassing, and clients should be able to use an 
extended instance without modifying their code. 
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ve
d Structure: Singleton
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ve
d Consequences: Singleton

• Benefits
– Controlled access to sole instance
– Reduced name space
– Permits refinement of operations and 

representation
– Permits a variable number of instances
– More flexible than class operations

• Drawbacks
– Overuse can make a system less OO.
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ve
d Known Uses in Java: Singleton

• java.lang.Runtime.getRuntime()
• java.awt.Toolkit.getDefaultToolkit()
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ve
d Questions: Singleton

• The pattern for Singleton uses a private 
constructor, thus preventing extendability.  
What issues should you consider if you want 
to make the Singleton “polymorphic”?

• Sometimes a Singleton needs to be set up 
with certain data, such as filename, database 
URL, etc.  How would you do this, and 
what are the issues involved?
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ve
d Exercises: Singleton

• Turn the following class into a Singleton:

public class Earth {
  public static void spin() {}
  public static void warmUp() {}
}

public class EarthTest {
  public static void main(String[] args) {
    Earth.spin();
    Earth.warmUp();
  }
}
• Now change it to be extendible
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ve
d Adapter
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ve
d Adapter

• Intent
– Convert the interface of a class into another 

interface clients expect.  Adapter lets classes 
work together that couldn't otherwise because 
of incompatible interfaces.

• Also known as
– Wrapper
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ve
d Motivation: Adapter

• Convert an Iterator to an Enumeration



import java.util.Enumeration;

/** @since JDK 1.0 */
public class Printer {
  public static void print(Enumeration e) {
    System.out.println(
      "Enumeration {");
    while (e.hasMoreElements()) {
      System.out.print("  " + e.nextElement());
      if (e.hasMoreElements()) 
        System.out.println(",");
    }
    System.out.println("}");
  }
}



import java.util.*;

/** Adapter converts Iterator to Enumeration */
public class EnumerationIterator implements 
    Enumeration {
  private final Iterator adaptee;
  public EnumerationIterator(Iterator adaptee) {
    this.adaptee = adaptee;
  }  public boolean hasMoreElements() {
    return adaptee.hasNext();
  }
  public Object nextElement() {
    return adaptee.next();
  }
}



import java.util.*;
public class PrinterTest {
  public static void main(String[] args) {
    Vector old_collection = new Vector();
    for (char c = 'A'; c < 'M'; c++) {
      old_collection.addElement("" + c);
    }
    Printer.print(old_collection.elements());    String[] names = { 
      "Erich", "Richard", "Ralph", "John" };
    List new_collection = Arrays.asList(names);
    Enumeration en = new EnumerationIterator(
      new_collection.iterator());
    Printer.print(en);
  }
}



> java PrinterTest 
Enumeration {
  A,
  B,
  C,
  D,
  E,
  F,
  G,
  H,
  I,
  J,
  K,
  L}
Enumeration {
  Erich,
  Richard,
  Ralph,
  John}
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ve
d Applicability: Adapter

• Use the Adapter pattern when
– some existing class does not match the interface 

you need
– you need to use several existing subclasses, but 

you don’t want to subclass each one
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ve
d Structure: Class Adapter
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ve
d Structure: Object Adapter
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ve
d Consequences: Adapter

• Class adapter 
– won’t work when we want to adapt a class and 

all its subclasses
– lets Adapter override some of Adaptee’s 

methods

• Object adapter
– single Adaptor can work with many Adaptees
– makes it harder to override Adaptee behaviour
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ve
d Two-way Adapter



import java.util.*;
public class EnumIterAdapter
    implements Enumeration, Iterator {
  private final Iterator adaptee;
  public EnumIterAdapter(Iterator iter) {
    adaptee = iter;
  }  public EnumIterAdapter(final Enumeration en) {
    this(new Iterator() {
      public boolean hasNext() {
        return en.hasMoreElements();
      }
      public Object next() {
        return en.nextElement();
      }
      public void remove() {
        throw new UnsupportedOperationException();
      }
    });
  }



  public boolean hasMoreElements() {
    return adaptee.hasNext();
  }
  public Object nextElement() {
    return adaptee.next();
  }
  public boolean hasNext() {
    return adaptee.hasNext();
  }
  public Object next() {
    return adaptee.next();
  }
  public void remove() {
    adaptee.remove();
  }
}



43

Co
py

rig
ht

 ©
 2

00
5 

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll 

Ri
gh

ts
 R

es
er

ve
d Known Uses in Java: Adapter

• The java.io.InputStreamReader adapts 
java.io.InputStream to have the correct 
java.io.Reader interface

• The java.awt.MouseAdapter adapts 
java.awt.MouseListener without changing 
the interface.
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ve
d Questions: Adapter

• What are the structural differences between 
an Adapter and a Proxy?

• Under what circumstances are they 
interchangeable?

• Java uses a MouseAdapter class to 
implement the MouseListener interface 
and to provide default operations.  What 
type of Adapter is this?
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ve
d Exercises: Adapter

• Consider the following Singer interface:
public interface Singer {
  void sing();
}
• It is used as follows
public class MusicFest {
  private final List singers = new LinkedList();
  public void addSinger(Singer singer) {
    singers.add(singer);
  }
  public void singAll() {
    Iterator it = singers.iterator();
    while(it.hasNext())
      ((Singer)it.next()).sing();
  }
}
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ve
d

• Now consider the Rapper class:
public class Rapper {
  public void talk() {
    System.out.println(
      "Vulgar lyrics deleted ...");
  }
}
• Now write a RapperAdapter class so that 

the MusicFestTest runs:

public class MusicFestTest {
  public static void main(String[] args) {
    MusicFest fest = new MusicFest();
    fest.addSinger(new Bass());
    fest.addSinger(new Soprano());
    fest.addSinger(new RapperAdapter());
    fest.singAll();
  }
}
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ve
d Conclusion to Design Patterns

• Programmers become more effective when 
designing with patterns

• Knowing the basic patterns helps you 
understand new patterns easily

• New patterns discovered all the time:
– http://www.hillside.net for all sorts of patterns
– http://www.javasoft.com for J2EE patterns

• And remember, BBPEE !
– (for those with a short memory, that is Broad-

Based Patterns Educational Empowerment  )
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ve
d End of Design Patterns Talk

• Thank you for attending this talk 
• Please encourage your developers to learn 

patterns
• Please contact me for further information 

about Design Patterns Courses:
heinz@javaspecialists.co.za

• You should subscribe to The Java™ 
Specialists’ Newsletter on:
http://www.javaspecialists.co.za


