
Design Patterns
The Timeless Way of Coding

Designed and Presented by
Dr. Heinz Kabutz

Illustrations by Edith Sher

Copyright © 2005 Maximum Solutions (Pty) Ltd – All Rights Reserved

2

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Dr Heinz Kabutz

• Born and bred in fishing village Cape Town
• Professional Java programmer since 1997

– Worked on many large Java systems
– Trained hundreds of programmers in Java and

Design Patterns

• PhD in Computer Science from the
University of Cape Town
– Focused on performance analysis of distributed

communicating systems

3

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Maximum Solutions (Pty) Ltd

The Java Specialists
• Founded in 1998 by Heinz & Helene Kabutz
• A South African company

– Active in South Africa, Germany, Austria, UK,
Mauritius, China, Estonia, Switzerland

• Company has four interacting energies:
– Software Development
– Specialist Training

• Maximum one week a month
– Consulting
– Research

• The Java™ Specialists’ Newsletter

4

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d The Java Specialists’ Newsletter

• Advanced free publication written
specifically for Java Specialists

• Only publication of its kind in the world
• Translated into 10 languages (incl Zulu)
• Produced in South Africa

– Something that Africa can be proud of

• Currently read in 108 countries
• Over 10000 regular readers
• http://www.javaspecialists.co.za

5

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d 1: Introduction to Patterns

6

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Structure of Talk

• Introduction to Design Patterns
• The Singleton

– Why your developers like it

• The Adapter
– Which to use when

7

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Questions

• Please please please please ask questions!
• There are some stupid questions

– They are the ones you didn’t ask
– Once you’ve asked them, they are not stupid

anymore

• Assume that if you didn’t understand
something that it was my fault

• The more you ask, the more everyone learns
(including me)

8

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Learning Patterns

• Design Patterns are for
programmers and developers
– NOT analysts and architects!

• Improves programmer communication
• Broad-based Patterns Educational

Empowerment (BBPEE)
• Courses & Study Groups

– Courses short and sweet
– Led by people already in the know
– Best approach: Internal courses

9

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Why are learning patterns?

• Manager forced you

• Want to become better OO programmer
• Fascination with Patterns
• Free breakfast?

10

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Vintage Wines

• Design Patterns are like good red wine
– You cannot appreciate them at first
– As you study them you learn the difference

between plonk and vintage
– As you become a connoisseur you experience

the various textures you didn’t notice before

• Warning: Once you are hooked,
you will no longer be satisfied
with plonk!

11

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Why are patterns so important?

• Provide a view into the brains
of OO experts

• Help you understand existing
designs

• Patterns in Java, Volume 1,
Mark Grand writes
– "What makes a bright, experienced programmer

much more productive than a bright, but
inexperienced, programmer is experience."

12

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Coding Patterns

• We have all seen patterns in code:
– for (int i=0; i<names.length; i++) ...
– common data structures, like linked list

• This is the way we “do things”
• University teaches us to code, to theorise,

but not to design
– Lecturers often don’t have enough real-world

experience
• Design is normally learnt through

experience
– At the expense of the employer!

13

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Introduction

• To begin learning Design Patterns, you need
the basics:
– Abstraction
– Encapsulation
– Modularity
– Hierarchy (Composition and Inheritance)

• Should be able to follow basic UML class
diagrams

14

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Design Patterns Origin

The Timeless Way of Building
Christopher Alexander

There is a central quality which is the root criterion of
life and spirit in a man, a town, a

building, or a wilderness.
If you want to make a living

flower, you don’t build it
physically, with tweezers,
cell by cell. You grow it

from the seed.

15

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d What’s in a name?

The Timeless Way of Building
The search for a name is a fundamental part of the

process of inventing or discovering a pattern.
So long as a pattern has a weak name, it means that

it is not a clear concept, and you cannot tell me to
make “one”.

16

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Why do we need a diagram?

The Timeless Way of Building
If you can’t draw a [class] diagram of it, it isn’t a

pattern

17

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Misuse of Design Patterns

• Patterns Misapplied
– “design” patterns should not be used during

analysis

• Cookie Cutter Patterns
– patterns are generalised solutions

• Misuse By Omission
– reinventing a crooked wheel

18

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Summary

• Object Orientation is here to stay
• Design Patterns will fast-track you in

learning how to design with objects
• Remember: BBPEE!

19

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Singleton

20

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Singleton

• Intent
– Ensure a class only

has one instance, and
provide a global point
of access to it.

21

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Motivation: Singleton

• It’s important for some classes to have
exactly one instance, e.g. SecurityModule

22

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Sample Code: Singleton

public class SecurityModule {
 private static SecurityModule instance =
 new SecurityModule();
 public static SecurityModule getInstance() {
 return instance;
 }
 private SecurityModule() {
 loadPasswords();
 }
 public UserContext login(String username,
 String password) {
 return new UserContext(username, password);
 }

 // etc.

23

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Applicability: Singleton

• Use the Singleton pattern when
– there must be exactly one instance of a class,

and it must be accessible to clients from a well-
known access point.

– when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

24

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Structure: Singleton

25

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Consequences: Singleton

• Benefits
– Controlled access to sole instance
– Reduced name space
– Permits refinement of operations and

representation
– Permits a variable number of instances
– More flexible than class operations

• Drawbacks
– Overuse can make a system less OO.

26

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Known Uses in Java: Singleton

• java.lang.Runtime.getRuntime()
• java.awt.Toolkit.getDefaultToolkit()

27

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Questions: Singleton

• The pattern for Singleton uses a private
constructor, thus preventing extendability.
What issues should you consider if you want
to make the Singleton “polymorphic”?

• Sometimes a Singleton needs to be set up
with certain data, such as filename, database
URL, etc. How would you do this, and
what are the issues involved?

28

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Exercises: Singleton

• Turn the following class into a Singleton:

public class Earth {
 public static void spin() {}
 public static void warmUp() {}
}

public class EarthTest {
 public static void main(String[] args) {
 Earth.spin();
 Earth.warmUp();
 }
}
• Now change it to be extendible

29

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Adapter

30

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Adapter

• Intent
– Convert the interface of a class into another

interface clients expect. Adapter lets classes
work together that couldn't otherwise because
of incompatible interfaces.

• Also known as
– Wrapper

31

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Motivation: Adapter

• Convert an Iterator to an Enumeration

import java.util.Enumeration;

/** @since JDK 1.0 */
public class Printer {
 public static void print(Enumeration e) {
 System.out.println(
 "Enumeration {");
 while (e.hasMoreElements()) {
 System.out.print(" " + e.nextElement());
 if (e.hasMoreElements())
 System.out.println(",");
 }
 System.out.println("}");
 }
}

import java.util.*;

/** Adapter converts Iterator to Enumeration */
public class EnumerationIterator implements
 Enumeration {
 private final Iterator adaptee;
 public EnumerationIterator(Iterator adaptee) {
 this.adaptee = adaptee;
 } public boolean hasMoreElements() {
 return adaptee.hasNext();
 }
 public Object nextElement() {
 return adaptee.next();
 }
}

import java.util.*;
public class PrinterTest {
 public static void main(String[] args) {
 Vector old_collection = new Vector();
 for (char c = 'A'; c < 'M'; c++) {
 old_collection.addElement("" + c);
 }
 Printer.print(old_collection.elements()); String[] names = {
 "Erich", "Richard", "Ralph", "John" };
 List new_collection = Arrays.asList(names);
 Enumeration en = new EnumerationIterator(
 new_collection.iterator());
 Printer.print(en);
 }
}

> java PrinterTest
Enumeration {
 A,
 B,
 C,
 D,
 E,
 F,
 G,
 H,
 I,
 J,
 K,
 L}
Enumeration {
 Erich,
 Richard,
 Ralph,
 John}

36

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Applicability: Adapter

• Use the Adapter pattern when
– some existing class does not match the interface

you need
– you need to use several existing subclasses, but

you don’t want to subclass each one

37

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Structure: Class Adapter

38

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Structure: Object Adapter

39

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Consequences: Adapter

• Class adapter
– won’t work when we want to adapt a class and

all its subclasses
– lets Adapter override some of Adaptee’s

methods

• Object adapter
– single Adaptor can work with many Adaptees
– makes it harder to override Adaptee behaviour

40

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Two-way Adapter

import java.util.*;
public class EnumIterAdapter
 implements Enumeration, Iterator {
 private final Iterator adaptee;
 public EnumIterAdapter(Iterator iter) {
 adaptee = iter;
 } public EnumIterAdapter(final Enumeration en) {
 this(new Iterator() {
 public boolean hasNext() {
 return en.hasMoreElements();
 }
 public Object next() {
 return en.nextElement();
 }
 public void remove() {
 throw new UnsupportedOperationException();
 }
 });
 }

 public boolean hasMoreElements() {
 return adaptee.hasNext();
 }
 public Object nextElement() {
 return adaptee.next();
 }
 public boolean hasNext() {
 return adaptee.hasNext();
 }
 public Object next() {
 return adaptee.next();
 }
 public void remove() {
 adaptee.remove();
 }
}

43

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Known Uses in Java: Adapter

• The java.io.InputStreamReader adapts
java.io.InputStream to have the correct
java.io.Reader interface

• The java.awt.MouseAdapter adapts
java.awt.MouseListener without changing
the interface.

44

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Questions: Adapter

• What are the structural differences between
an Adapter and a Proxy?

• Under what circumstances are they
interchangeable?

• Java uses a MouseAdapter class to
implement the MouseListener interface
and to provide default operations. What
type of Adapter is this?

45

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Exercises: Adapter

• Consider the following Singer interface:
public interface Singer {
 void sing();
}
• It is used as follows
public class MusicFest {
 private final List singers = new LinkedList();
 public void addSinger(Singer singer) {
 singers.add(singer);
 }
 public void singAll() {
 Iterator it = singers.iterator();
 while(it.hasNext())
 ((Singer)it.next()).sing();
 }
}

46

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d

• Now consider the Rapper class:
public class Rapper {
 public void talk() {
 System.out.println(
 "Vulgar lyrics deleted ...");
 }
}
• Now write a RapperAdapter class so that

the MusicFestTest runs:

public class MusicFestTest {
 public static void main(String[] args) {
 MusicFest fest = new MusicFest();
 fest.addSinger(new Bass());
 fest.addSinger(new Soprano());
 fest.addSinger(new RapperAdapter());
 fest.singAll();
 }
}

47

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d Conclusion to Design Patterns

• Programmers become more effective when
designing with patterns

• Knowing the basic patterns helps you
understand new patterns easily

• New patterns discovered all the time:
– http://www.hillside.net for all sorts of patterns
– http://www.javasoft.com for J2EE patterns

• And remember, BBPEE !
– (for those with a short memory, that is Broad-

Based Patterns Educational Empowerment)

48

Co
py

rig
ht

 ©
 2

00
5

M
ax

im
um

 S
ol

ut
io

ns
 (P

ty
) L

td
 –

 A
ll

Ri
gh

ts
 R

es
er

ve
d End of Design Patterns Talk

• Thank you for attending this talk
• Please encourage your developers to learn

patterns
• Please contact me for further information

about Design Patterns Courses:
heinz@javaspecialists.co.za

• You should subscribe to The Java™
Specialists’ Newsletter on:
http://www.javaspecialists.co.za

